

Spherical electronic generation unit

+Electrical output

Assume that the frame are filled with three different sized units (S,M,L) in the same ratio.

By concerning,

- Mean wind speed: 5.7m/s at 10m height
- Distribution of the direction of wind on Copenhagen
- Effective aria of the tower according to direction
- Loss of wind energy by overlapping units

Electrical output = 36MW

Embodied energy

From the amount of the steel (energy consumption: 25000MJ/ton) used for construction of the frame,

Embodied energy = 193TJ

 $\frac{\text{Embodied energy}}{\text{Electrical output}} = \frac{193\text{TJ}}{36\text{MW}(\text{J/s})} = 62.05 \text{ days}$

It can be estimated that, when this tower is completed, time for paying back their embodied energy will be around 2 months. This is less than the energy pay back time of the usual wind mills.

